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Abstract

We describe, by their holonomy groups, all simply connected irreducible non-locally symmetric
pseudo-Riemannian spinc manifolds which admit parallel spinors. So we generalize the Riemannian
spinc case [A. Moroianu, Parallel and killing spinors on spinc manifolds, Commun. Math. Phys. 187
(1997) 417–427] and the pseudo-Riemannian spin one [1].
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MSC: 53C50; 53C27

Keywords: Holonomy groups; Pseudo-Riemannian spinc manifolds; Parallel spinors

1. Introduction

In [13], Moroianu described all simply connected Riemannian spinc manifolds admitting
parallel spinors. Precisely, he showed the following result:

Theorem 1. A simply connected Riemannian spinc manifolds (M,g) admits a parallel
spinor if and only if it is isometric to the Riemannian product (M1, g1) × (M2, g2) of a
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Table 1

Holonomy group N

SU(p′, q′) ⊂ SO(2p′, 2q′) 2
Sp(p′, q′) ⊂ SO(4p′, 4q′) p′ + q′ + 1
G2 ⊂ SO(7) 1
G′

2(2) ⊂ SO(4, 3) 1
GC2 ⊂ SO(7, 7) 2
Spin(7) ⊂ SO(8) 1
Spin(4, 3) ⊂ SO(4, 4) 1
Spin(7,C) ⊂ SO(8, 8) 1

complete simply connected Kähler manifold (M1, g1) and a complete simply connected
spin manifold (M2, g2) admitting a parallel spinor. The spinc structure of (M,g) is then
the product of the canonical spinc structure of (M1, g1) and the spin structure of (M2, g2).

In [1], Baum and Kath characterized, by their holonomy group, all simply connected
irreducible non-locally symmetric pseudo-Riemannian spin manifolds admitting parallel
spinors. Precisely, they proved the following result:

Theorem 2. Let (M,g) be a simply connected irreducible non-locally symmetric pseudo-
Riemannian spin manifold of dimension n = p+ q and signature (p, q). We denote by N
the dimension of the space of parallel spinors on M. Then (M,g) admits a parallel spinors
if and only if the holonomy group H of M is (up to conjugacy inO(p, q)) one in the Table 1:

Our aim is to generalize this result for the simply connected irreducible non-locally sym-
metric pseudo-Riemannian spinc manifolds. More precisely, we show that:

Theorem 3. Let (M,g) be a connected simply connected irreducible non-locally symmetric
spinc pseudo-Riemannian manifold of dimension n = p+ q and signature (p, q). Then the
following conditions are equivalent

(i) (M,g) admits a parallel spinor,
(ii) either (M,g) is a spin manifold which admit a parallel spinor, or (M,g) is a Kähler

not Ricci-flat manifold,
(iii) the holonomy group H of (M,g) is (up to conjugacy in O(p, q)) one in Table 1 or

H = U(p′, q′), p = 2p′ and q = 2q′.

For H = U(p′, q′) the dimension of the space of parallel spinors on M is 1.

This theorem is a contribution to the resolution of the following problem: (P) What are
the possible holonomy groups of simply connected pseudo-Riemannian spinc manifolds
which admit parallel spinors? Some partial answers to this problem have been given by
Wang for the Riemannian spin case [15], by Baum and Kath for the irreducible pseudo-
Riemannian spin one [1], by Leistner for the Lorentzian spin one [10,12], by Moroianu
for the Riemannian spinc one (Theorem 1), and by author for the totally reducible pseudo-
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Riemannian spin one and the Lorentzian spinc one [7,8]. The problem remains open even
though big progress have been made because the classification of the possible holonomy
groups of pseudo-Riemannian manifolds is not yet made with the exception of the irreducible
case made by Berger [3,4] and the case of Lorentzian manifolds made by Bérard Bergery, the
author, Leistner and Galaev [2,11,12,6]. By De Rham-Wu’s splitting theorem, the problem
(P) can be reduced to the case of the indecomposable pseudo-Riemannian manifolds (its
holonomy representation does not leave invariant any non-degenerate proper subspace).
But the general classification remains extremely difficult, because some indecomposable
but non irreducible manifolds exist, i.e. its holonomy representation leaves invariant a
degenerate proper subspace but its does not leave invariant any non-degenerate proper
subspace. In this article we deal with studying the irreducible case that is a particular case
of the indecomposable one.

In paragraph 2 of this paper we define the group Spinc(p, q) and its spin representa-
tion. We also define the spinc-structure on pseudo-Riemannian manifolds and its associ-
ated spinor bundle. In paragraph 2 we give an algebraic characterization of the pseudo-
Riemannian spinc manifolds which admit parallel spinors and we prove Theorem 3.

2. Spinor representations and spinc-bundles

2.1. Spinc(p, q) groups

Let 〈·, ·〉p,q be the ordinary scalar product of signature (p, q) on Rm(m = p+ q). Let
Clp,q be the Clifford algebra of Rp,q := (Rm, 〈·, ·〉p,q) and Clp,q its complexification. We
denote by · the Clifford multiplication of Clp,q. Clp,q contains the groups:

S
1 := {z ∈ C; ‖ z ‖= 1}

and

Spin(p, q) := {X1, . . . , X2k; 〈Xi,Xi〉p,q = ±1; k ≥ 0}.

Since S1 ∩ Spin(p, q) = {−1, 1}, we define the group Spinc(p, q) by:

Spinc(p, q) := Spin(p, q) · S1 = Spin(p, q) ×Z2 S
1.

Consequently, the elements of Spinc(p, q) are the classes [g, z] of pairs (g, z) ∈
Spin(p, q) × S1, under the equivalence relation (g, z) ∼ (−g,−z). The following sequences
are exact (see [9]):

1 → Z2 → Spin(p, q)
λ→ SO(p, q) → 1

1 → Z2 → Spinc(p, q)
ξ→ SO(p, q) × S1 → 1,
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where λ(g)(x) = g · x · g−1 for x ∈ Rm and ξ([g, z]) = (λ(g), z2). Let (ei)1≤i≤m be an or-
thonormal basis of Rp,q (〈ei, ej〉 = εiδij, εi = −1 for 1 ≤ i ≤ p and εi = +1 for 1 + p ≤
i ≤ m). The Lie algebras of Spin(p, q) and Spinc(p, q) are respectively:

spin(p, q) := {ei · ej; 1 ≤ i < j ≤ m}

and

spinc(p, q) := spin(p, q) ⊕ iR.

The derivative of ξ is a Lie algebra isomorphism and it is given by:

ξ∗(ei · ej, it) = (λ∗(ei · ej), it) = (2Eij, 2it),

where Eij = −εjDij + εiDji and Dij is the standard basis of gl(m,R) with the (i, j)-
component equal 1 and all other zero.

2.2. Spinc representations

Let U =
(

0 i

i 0

)
, V =

(
0 −1

1 0

)
, E =

(
1 0

0 1

)
, T =

(
−1 0

0 1

)
, and

C(2n) the complex algebra consisting of 2n × 2n-matrices. It is well know that the Clifford
algebra Clp,q is isomorphic to C(2n) if m = p+ q is even and to C(2n) ⊕ C(2n) if m is
odd. Some natural isomorphisms are defined like follows (see [1]). In casem = 2n is even,
we define Φp,q : Clp,q → C(2n) by:

Φp,q(e2j−1) = τ2j−1E⊗ · · · ⊗ E⊗ U ⊗ T ⊗ · · · ⊗ T

Φp,q(e2j) = τ2jE⊗ · · · ⊗ E⊗ V ⊗ T ⊗ · · · ⊗ T︸ ︷︷ ︸
(j−1)−times

, (1)

where τj = i if εj = −1 and τj = 1 if εj = 1. In case m = 2n+ 1 is odd, Φp,q : Clp,q →
C(2n) ⊕ C(2n) is defined by:

Φp,q(ek) = (Φp,q−1(ek), Φp,q−1(ek)), k = 1, . . . , m− 1;

Φp,q(em) = (iT ⊗ · · · ⊗ T,−iT ⊗ · · · ⊗ T ). (2)

This yields representations of the spin group Spin(p, q) in case m even by restriction
and in case m odd by restriction and projection onto the first component. The module space
of Spin(p, q)-representation is ∆p,q = C2n . The Clifford multiplication is defined by:

ifm is even X · u := Φp,q(X)(u),

ifm is odd X · u := pr1Φp,q(X)(u), (3)
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forX ∈ Cm and u ∈ ∆p,q, where pr1 is the projection onto the first component. A usual
basis of ∆p,q is the following: u(νn, . . . , ν1) := u(νn) ⊗ · · · ⊗ u(ν1); νj = ±1, where

u(1) =
(

1

0

)
and u(−1) =

(
0

1

)
∈ C2.

The spin representation of the group Spin(p, q) extends to a Spinc(p, q)-representation
by:

Φp,q([g, z])(v) = zΦp,q(g)(v) := zg · v, ifm is even,

Φp,q([g, z])(v) = z pr1Φp,q(g)(v) := zg · v, ifm is odd, (4)

for v ∈ ∆p,q and [g, z] ∈ Spinc(p, q). Therefore ∆p,q becomes the module space of
Spinc(p, q)-representation (see [5]).

There exists a hermitian inner product 〈·, ·〉∆ on the spinor module ∆p,q defined by:

〈v,w〉∆ := ip(p−1)/2(e1, . . . , epv,w); for v,w ∈ ∆p,q,

where (z, z′) =∑2n
i=1 zi · z′i is the standard hermitian product on C2n . 〈·, ·〉∆ satisfies the

following properties:

〈X · v,w〉∆ = (−1)p+1〈v,X · w〉∆, (5)

for X ∈ Cm.

2.3. Spinor bundles

Let (M,g) be a connected pseudo- Riemannian oriented manifold of signature (p, q).
And let PSO(p,q) denote the bundle of positively oriented frames on M.

Definition 1. A structure spin on (M,g) is a λ-reduction PSpin(p,q) of PSO(p,q). A structure
spinc on (M,g) is a S1-principal bundle PS1 over M and a ξ-reduction (PSpinc(p,q),Λ)
of the product (SO(p, q) × S1)-principal bundle PSO(p,q)×̃PS1 , i.e. Λ : PSpinc(p,q) →
(PSO(p,q)×̃PS1 ) is a two-fold covering verifying:

(i) PSpinc(p,q) is a Spinc(p, q)-principal bundle over M,
(ii) ∀u ∈ PSpinc(p,q), ∀a ∈ Spin(p, q),

Λ(ua) = Λ(a)ξ(a).

We note that if (M,g) is a space- and time-oriented manifold its carries a spinc-structure
if and only if the second Stiefl–Whitney class of M,w2(M) ∈ H2(M,Z) is the Z2 reduction
of an integral class z ∈ H2(M,Z2) [9,5].
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Example 1. Every pseudo-Riemannian spin manifold is canonically a spinc manifold. The
spinc- manifold is obtained as:

PSpinc(p,q) = PSpin(p,q) ×Z2 S
1,

where PSpin(p,q) is the Spin-bundle and Z2 acts diagonally by (−1,−1).

Example 2. Any irreducible pseudo-Riemannian not Ricci-flat Kähler manifold is canon-
ically a spinc manifold.

Indeed the holonomy group H of (M,g) is U(p′, q′), where (p, q) = (2p′, 2q′) is the sig-
nature of (M,g). Then PSO(p,q) is reduced to the holonomy U(p′, q′)-principal bundle
PU(p′,q′). Moreover, there exists an 〈·, ·〉p,q-orthogonal complex structure J on Rp,q witch
commute with the elements of U(p′, q′). Then there exist elements (ek)k=1,...,p′+q′ such
that (ek, Jek)k=1,...,p′+q′ is an orthonormal basis of Rp,q. Hence we can imbed U(p′, q′) in
SO(p, q) by

i : U(p′, q′) ↪→ SO(p, q)

A+ iB = ((akl)1≤k,l≤m + i(bkl)1≤k,l≤m) →
((

akl bkl

−bkl akl

))
1≤k,l≤m

.

We consider the homomorphism

α : U(p′, q′) ↪→ SO(p, q) × S1 C → (i(C), det(C))

The eigen values of every element C ∈ U(p′, q′) is in S1 and

cos 2θ + εk sin 2θek · Jek = εk(cos θek + sin θJek)(− cos θek + sin θJek),

where εk = 〈ek, ek〉p,q. Then the following homomorphism is well defined:

α̃ : U(p′, q′) ↪→ Spinc(p, q) C →
m∏
k=1

(
cos

θk

2
+ εk sin

θk

2
ek · Jek

)
ei/2
∑

θk ,

where eiθk , k = 1, . . . , m, are the eigen values of C. And it is easy to verifies that the
following diagram commutes

(6)

Consequently,

PSpinc(p,q) = PU(p′,q′) ×α̃ Spin
c(p, q).
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Now, let us denote by S := PSpinc(p,q) ×Φp,q ∆p,q the spinor bundle associated to the
spinc-structure PSpin(p,q). The Clifford multiplication given by (3) defines a Clifford mul-
tiplication on S:

TM ⊗ S = (PSpin(p,q) ×Φp,q R
m) ⊗ (PSpin(p,q) ×Φp,q ∆

±
p,q) → S

(X⊗ ψ) = [q, x] ⊗ [q, v] → [q, xv] =: X · ψ.
The scalar product 〈·, ·〉∆ is Spinc0(p, q)-invariant. Then if we suppose that (M,g) is a

space- and time-oriented manifold 〈·, ·〉∆ defines a scalar product on S by:

〈ψ,ψ1〉∆ = 〈v, v1〉∆, for ψ = [q, v] and ψ1 = [q, v1] ∈ Γ (S).

According to (5), it is then easy to verify that

〈X · ψ,ψ1〉∆ = (−1)p+1〈ψ,X · ψ1〉∆, (7)

for X ∈ Γ (M) and ψ,ψ1 ∈ Γ (S). Now, as in the Riemannian case (see [5]), if (M,g) is
a pseudo- Riemannian spinc manifold, every connection form A : TPS1 → iR on the S1-
bundle PS1 defines (together with the Levi–Civita D of (M,g)) a covariant derivative ∇A

on the spinor bundle S, called the spinor derivative associated to (M,g, S, PS1 , A).
Henceforth, a pseudo- Riemannian spinc manifold will be a set (M,g, S, PS1 , A), where

(M,g) is an oriented connected pseudo-Riemannian manifold, S is a spinc structure, PS1

is the S1-principal bundle over M and A is a connection form on PS1 . Using (7) and by the
same proof in the Riemannian case (see [5]), we conclude that

Proposition 1. ∀X, Y ∈ Γ (M) and ∀ψ,ψ1 ∈ Γ (S),

∇A
Y (X · ψ) = X · ∇A

Y (ψ) +DYX · ψ. (8)

And if we suppose that (M,g) is space- and time-oriented manifold,

X〈ψ,ψ1〉∆ = 〈∇A
Xψ,ψ1〉∆ + 〈ψ,∇A

Xψ1〉∆. (9)

Let us denoted by FA := iw the curvature form of A, seen as an imaginary-valued two-form
on M, by R and Ric, respectively, the curvature and the Ricci tensors of (M,g) and by RA

the curvature tensor of ∇A. Like in the Riemannian case (see [5]), if we put ω̃(X) := X�ω
we have

Proposition 2. For q = (e1, . . . , em) a local section of PSpin(p,q), ∀X, Y ∈ Γ (M) and ∀ψ ∈
Γ (S),

RA(X, Y )ψ = 1

2

∑
1≤i<j≤m

εiεj g(R(X, Y )ei, ej)ei · ej · ψ + i
1

2
ω(X, Y ) · ψ, (10)

and ∑
1≤i≤m

εiei · RA(X, ei)ψ = −1

2
Ric(X) · ψ + i

1

2
ω̃(X) · ψ. (11)
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Remark 1. According to Example 1, if (M,g) is spin then it is spinc. Moreover, the auxiliary
bundle PS1 is trivial and then there exists a global section σ : M → PS1 . We choose the
connection defined by A to be flat, and we denote ∇A by ∇. Conversely, if the auxiliary
bundle PS1 of a spinc-structure is trivial, it is canonically identified with a spin-structure.
Moreover, if the connection A is flat, by this identification, ∇A corresponds to the covariant
derivative on the spinor bundle.

3. Parallel spinors

3.1. Algebraic characterization

It is well know that there exists a bijection between the space PS of all parallel spinors
on (M,g) and the space

VH̃ = {v ∈ ∆p,q; H̃ · v = v}

of all fixed spinors of ∆p,q with respect to the holonomy group H̃ of the connection ∇A

[1]. If (M,g) is supposed to be simply connected, then PS is in bijection with:

VH = {v ∈ ∆p,q; H̃ · v = 0},

where H̃ is the Lie algebra of H̃ . Moreover, provided with the connection defined by the
Levi–Civita connection D and the connection form A the holonomy group ofPSO(p, q)×̃PS1

is ξ(H̃) ⊂ H ×HA, where H is the holonomy group of (M,g) and HA the one of A (see
Chapter II, [14]).HA = {1} if A is flat andHA = S1 otherwise. With the notations introduced
in Section 2.1, for (B, it) ∈ ξ∗(H̃), we have

ξ−1
∗ (B, it) =

(
λ−1

∗ (B),
1

2
it

)
.

Now if we differentiate the relation (4) at [1,1], we get:

φp,q(C, it)(v) = itv+ φp,q(C)(v),

for (C, it) ∈ spinc(p, q) and v ∈ ∆p,q. Then

φp,q(ξ
−1
∗ (B, it))(v) = 1

2 itv+ φp,q(λ−1∗ (B))(v).

We conclude that

Proposition 3. (M,g) admits a non trivial parallel spinor if and only if there exists 0 �=
v ∈ ∆p,q such that

B · v := φp,q(λ
−1
∗ (B))(v) = − 1

2 itv, ∀(B, it) ∈ ξ∗(H̃) ⊂ H ⊕ HA, (12)

where H̃, H and HA are respectively the Lie algebras of H̃ , H and HA.
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3.2. Proof of theorem 3

Let (M,g, S, PS1 , A) be a spinc structure where (M,g) is a connected simply connected
irreducible non-locally symmetric pseudo-Riemannian manifold of dimension n = p+ q

and signature (p, q), which admits a non trivial parallel spinor ψ. We consider the two
distributions T and E defined by

Tx := {X ∈ TxM;X · ψ = 0},

Ex = {X ∈ TxM; ∃Y ∈ TxM;X · ψ = iY · ψ},

for x ∈ M. Since ψ is parallel, By (8), T and E are parallel. Since T is isotropic and the
manifold (M,g) is supposed irreducible, by the holonomy principe, we have

T = 0. (13)

Now denote by F the image of the Ricci tensor:

Fx := {Ric(X);X ∈ TxM}.

Since ψ is parallel, (11) shows that

Ric(X) · ψ = iω̃(X)ψ. (14)

Then F ⊂ E. Consequently, from (13), we obtain

E⊥ ⊂ F⊥ = {Y ∈ TM;Ric(Y ) = 0} = {Y ∈ TM; ω̃(Y ) = 0}.

(M,g) is supposed irreducible, by the holonomy principe, E = 0 or E = TM. If E = 0,
then F = 0. This gives Ric = 0 and ω̃ = 0. According to Remark 1, (M,g) is spin and ψ
is a parallel spinor on M. If E = TM, we have a (1,1)-tensor J defined by

X · ψ = iJ(X) · ψ, where X ∈ TM. (15)

Lemma 1. ForX, Y ∈ TxM, if (X+ iY ) · ψ = 0 then g(X, Y ) = 0 and g(X,X) = g(Y, Y ).

Proof of Lemma 1. If we denote by gc the complex form of g then

(X+ iY ) · (X+ iY ) · ψ = −gc(X+ iY,X+ iY )ψ

= (−g(X,X) + g(Y, Y ) − 2ig(X, Y ))ψ = 0.

Since ψ is non trivial we obtain the lemma.

Lemma 1 implies that J defines an orthogonal almost complex structure on M. Moreover,
from (8) and (15) we obtain J is parallel, since ψ is parallel. In consequence, (M,g) is a
Kähler manifold. Now if (M,g) is a Kähler manifold then there exists a canonical spinc

structure of (M,g). And from Remark 1 and Theorem 2, the following conditions are
equivalent:
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(a) (M,g) is not spin,
(b) HA = S1,
(c) (M,g) is not Ricci-flat,
(d) H = U(p′, q′).

Then the equivalence between (i) and (ii) of Theorem 3 are proved. And from Theorem
2, we have the equivalence between (ii) and (iii). To finish the proof of Theorem 3, it
remains to show for H = U(p′, q′) that the dimension of parallel spinors on M is 1. For
this, we remark that if we reduce the principle bundles PSpinc(p,q) and PSO(p,q)×̃PS1 to their
holonomy bundles the diagram (6) becomes

(16)

and the holonomy group of PSO(p,q)×̃PS1 is exactly α(U(p′, q′)) = ξ(H̃). However
U(p′, q′) = SU(p′, q′) × US1 , where

US1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

λ 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠ ; λ ∈ S1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
,

u(p′, q′) = su(p′, q′) ⊕ uS1 where uS1 � iR is the Lie algebra of US1 . If we consider the
imbedding

i : u(p′, q′) ↪→ so(2p′, 2q′)

A+ iB = ((akl)1≤k,l≤n + i(bkl)1≤k,l≤n) →
((

akl bkl

−bkl akl

))
1≤k,l≤n

α∗(uS1 ) is generated by (E12, i). Then:

ξ∗(H̃) = α∗(u(p′, q′)) = α∗(su(p′, q′)) ⊕ α∗(uS1 ) = i(su(p′, q′)) ⊕ (E12, i)R

From [1], u+ := u(1, . . . , 1) and u− := u(−1, . . . ,−1) generate the spaceVsu(p′,q′) = {v ∈
∆p,q; su(p′, q′)v = 0}. Moreover, by (1):

E12 · u+ = 1
2e1 · e2 · u+ = 1

2 iu+ and E12 · u− = − 1
2 iu−.
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Then u− belongs to the space

Vu(p′,q′) = {v ∈ ∆p,q;B · v+ 1
2 itv = 0,∀(B, it) ∈ ξ∗(H̃)},

and it is easy to verify that u− generates Vu(p′,q′). This completes the proof of Theorem 3.

Remark 2. By Theorem 3, we deduce the results of Moroianau made in the riemannian
case (see [13]).
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