Available online at www.sciencedirect.com
JOURNAL OF

scmnce@mnEcT“ GEOMETRY ano
PHYSICS

ELSEVIER Journal of Geometry and Physics 56 (2006) 14731483

www.elsevier.com/locate/jgp

Parallel spinors on pseudo-Riemannian
spin® manifolds™

Aziz Ikemakhen™

Cadi-Ayyad University, Faculté des Sciences et Techniques, B.P. 549, Gueliz, Marrakech, Morocco

Received 24 March 2005; received in revised form 12 July 2005; accepted 12 July 2005
Available online 29 September 2005

Abstract

We describe, by their holonomy groups, all simply connected irreducible non-locally symmetric
pseudo-Riemannian spin¢ manifolds which admit parallel spinors. So we generalize the Riemannian
spin® case [A. Moroianu, Parallel and killing spinors on spin¢ manifolds, Commun. Math. Phys. 187
(1997) 417-427] and the pseudo-Riemannian spin one [1].
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In[13], Moroianu described all simply connected Riemannian spin‘ manifolds admitting
parallel spinors. Precisely, he showed the following result:

Theorem 1. A simply connected Riemannian spin® manifolds (M, g) admits a parallel
spinor if and only if it is isometric to the Riemannian product (M1, g1) X (M>, g2) of a
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Table 1

=

Holonomy group

SU(p'.q') C SOQ2p',2q")
Sp(p'.q') C SO(Ap', 4q")
G, C SO(7)

Glyp) C SO4,3)

GS C 50(1,7)

Spin(7) C SO(8)
Spin(4,3) C SO(4, 4)
Spin(7,C) C SO, 8)

by
’Q\
+

—_— = N = =y N

complete simply connected Kdhler manifold (M1, g1) and a complete simply connected
spin manifold (M, g2) admitting a parallel spinor. The spin® structure of (M, g) is then
the product of the canonical spin® structure of (M1, g1) and the spin structure of (M3, g2).

In [1], Baum and Kath characterized, by their holonomy group, all simply connected
irreducible non-locally symmetric pseudo-Riemannian spin manifolds admitting parallel
spinors. Precisely, they proved the following result:

Theorem 2. Let (M, g) be a simply connected irreducible non-locally symmetric pseudo-
Riemannian spin manifold of dimension n = p + g and signature (p, q). We denote by N
the dimension of the space of parallel spinors on M. Then (M, g) admits a parallel spinors
if and only if the holonomy group H of M is (up to conjugacy in O(p, q)) one in the Table 1:

Our aim is to generalize this result for the simply connected irreducible non-locally sym-
metric pseudo-Riemannian spin¢ manifolds. More precisely, we show that:

Theorem 3. Let (M, g) be a connected simply connected irreducible non-locally symmetric
spin® pseudo-Riemannian manifold of dimension n = p + g and signature (p, q). Then the
following conditions are equivalent

(i) (M, g) admits a parallel spinor,
(1) either (M, g) is a spin manifold which admit a parallel spinor, or (M, g) is a Kihler
not Ricci-flat manifold,
(iii) the holonomy group H of (M, g) is (up to conjugacy in O(p, q)) one in Table 1 or
H=U(p',q),p=2p andq =24

For H =U(p', q) the dimension of the space of parallel spinors on M is 1.

This theorem is a contribution to the resolution of the following problem: (P) What are
the possible holonomy groups of simply connected pseudo-Riemannian spin® manifolds
which admit parallel spinors? Some partial answers to this problem have been given by
Wang for the Riemannian spin case [15], by Baum and Kath for the irreducible pseudo-
Riemannian spin one [1], by Leistner for the Lorentzian spin one [10,12], by Moroianu
for the Riemannian spin¢ one (Theorem 1), and by author for the totally reducible pseudo-
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Riemannian spin one and the Lorentzian spin¢ one [7,8]. The problem remains open even
though big progress have been made because the classification of the possible holonomy
groups of pseudo-Riemannian manifolds is not yet made with the exception of the irreducible
case made by Berger [3,4] and the case of Lorentzian manifolds made by Bérard Bergery, the
author, Leistner and Galaev [2,11,12,6]. By De Rham-Wu'’s splitting theorem, the problem
(P) can be reduced to the case of the indecomposable pseudo-Riemannian manifolds (its
holonomy representation does not leave invariant any non-degenerate proper subspace).
But the general classification remains extremely difficult, because some indecomposable
but non irreducible manifolds exist, i.e. its holonomy representation leaves invariant a
degenerate proper subspace but its does not leave invariant any non-degenerate proper
subspace. In this article we deal with studying the irreducible case that is a particular case
of the indecomposable one.

In paragraph 2 of this paper we define the group Spin‘(p, ¢) and its spin representa-
tion. We also define the spin®-structure on pseudo-Riemannian manifolds and its associ-
ated spinor bundle. In paragraph 2 we give an algebraic characterization of the pseudo-
Riemannian spin manifolds which admit parallel spinors and we prove Theorem 3.

2. Spinor representations and spin¢-bundles
2.1. Spin€(p, q) groups

Let (-, -)p,4 be the ordinary scalar product of signature (p, g) on R"(m = p + ¢q). Let
Cl, 4 be the Clifford algebra of R4 := (R™, (-, -), 4) and Cl,, 4 its complexification. We
denote by - the Clifford multiplication of Cl, 4. CI, , contains the groups:

sli={zeClzl=1)
and
Spin(p, @) :={X1, ..., Xok; (Xi, Xi)pg = £1;k > 0}.
Since S' N Spin(p, q) = {—1, 1}, we define the group Spin®(p, g) by:
Spin‘(p. q) := Spin(p. q) - S' = Spin(p. q) xz, S".

Consequently, the elements of Spin“(p, q) are the classes [g, z] of pairs (g,z) €
Spin(p, q) x S!, under the equivalence relation (g, z) ~ (—g, —z). The following sequences
are exact (see [9]):

1 — Zy — Spin(p, q)—)‘> SO(p,q) — 1

1 — Zy — Spin(p, q)—§> SO(p, q) x S' — 1,
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where A(g)(x) = g - x - g~ ! for x € R™ and £([g, z]) = (A(g), z%). Let (&;)1<i<m be an or-
thonormal basis of R”? ({e;, e;) = €;8;j, & = —1for1 <i < pandeg =+1forl + p <
i < m). The Lie algebras of Spin(p, q) and Spin‘(p, q) are respectively:
spin(p,q) :=={e;j-ej;1 <i < j<mj
and
spin‘(p, q) = spin(p, q) ® iR.
The derivative of £ is a Lie algebra isomorphism and it is given by:

Ei(ei - ej,1t) = (A«(e; - €)), 1t) = (2}, 2it),

where E;; = —¢;D;j + & Dj; and D;; is the standard basis of gi(m,R) with the (i, j)-
component equal 1 and all other zero.
0 i
Let U=| . s

0 -1 1 0 -1 0
= , = , T = , and

i 0 1 0 0 1 0 1
C(2™) the complex algebra consisting of 2" x 2"-matrices. It is well know that the Clifford
algebra Cl, , is isomorphic to C(2") if m = p + ¢ is even and to C(2") @ C(2") if m is
odd. Some natural isomorphisms are defined like follows (see [1]). In case m = 2n is even,

we define @, , : Cl, ;, — C(2") by:

2.2. Spin€ representations

Dpylerji-1)=1; 1EQ---QEQURT®---®T

b VYV=p/EQ - - QEQVRT® ---T, 1

p,q(eZJ) n;jE® RERVRIT® ® @))]
(j—1)—times

where t; =iife; = —landt; =1ife; = 1.Incasem =2n + lisodd, @, ,: Cl, ;, —

C(2") @ C(2") is defined by:
Dy qler) = (Pp g-1(er), Pp g—1(er)), k=1,...,m—1;
Dpylen) =(T®--- T, -TQ®---®T). 2)

This yields representations of the spin group Spin(p, g) in case m even by restriction
and in case m odd by restriction and projection onto the first component. The module space
of Spin(p, q)-representation is A, ;, = C?". The Clifford multiplication is defined by:

ifmiseven X -u:= &, (X)),
ifmisodd X -u:= pri®, (X)), 3
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forX e C" and u € A, 4, where pry is the projection onto the first component. A usual
basis of A, 4 is the following: u(vy, ..., v1) == u(v,) ® --- @ u(vy); v; = =1, where

1—1 d 1—0 C?
u(l) = 0 and u(—1)= 1 e C-.

The spin representation of the group Spin(p, g) extends to a Spin‘(p, g)-representation
by:

D, 48, 2D(W) = z2Pp 4(g)(v) :=zg - v, ifmiseven,
D, 48, 2D(W) =z pri®p 4()W) :=zg - v, ifmisodd, 4)

for ve A,, and [g, z] € Spin®(p, q). Therefore A, , becomes the module space of
Spin€(p, g)-representation (see [5]).
There exists a hermitian inner product (-, -) » on the spinor module A, , defined by:

(W, w)p :=1PP D 2y epv,w); for v,we A,,,
where (z,7) = leil i Z is the standard hermitian product on C2". (-, -) 4 satisfies the
following properties:

(X -v,w)a = (=D (v, X - w)a, (5)

for X € C™.

2.3. Spinor bundles

Let (M, g) be a connected pseudo- Riemannian oriented manifold of signature (p, g).
And let Pso(p,q) denote the bundle of positively oriented frames on M.

Definition 1. A structure spin on (M, g) is a A-reduction Pspiu(p,q) Of Pso(p,q)- A structure
spin€ on (M, g) is a Sl-principal bundle Ps1 over M and a &-reduction (Pspinc(p,q), A)
of the product (SO(p, q) x Sl)—principal bundle Pgo(p,q)inl, ie. A: Pspine(p,q) —
(Pso(p,q) % Ps1) is a two-fold covering verifying:

(i) Pspinc(p.q) is a Spin‘(p, g)-principal bundle over M,
(il) Yu € Pspinc(p,q)> Ya € Spin(p, q),

A(ua) = A(a)é(a).
We note that if (M, g) is a space- and time-oriented manifold its carries a spin¢-structure

if and only if the second Stiefl-Whitney class of M, wo(M) € H 2(M , 7)) is the Z, reduction
of an integral class z € H>(M, Zy) [9,5].
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Example 1. Every pseudo-Riemannian spin manifold is canonically a spin® manifold. The
spin€- manifold is obtained as:

Pspinc(pg) = Pspinp.g) X2, S
where Pspin(p,q) is the Spin-bundle and Z; acts diagonally by (—1, —1).

Example 2. Any irreducible pseudo-Riemannian not Ricci-flat Kéhler manifold is canon-
ically a spin“ manifold.

Indeed the holonomy group H of (M, g) is U(p’, ¢), where (p, q) = 2p’, 2¢’) is the sig-
nature of (M, g). Then Pso(p,q) is reduced to the holonomy U (p', ¢')-principal bundle
Py(p 4y Moreover, there exists an (-, -) , 4-orthogonal complex structure J on R?-7 witch
commute with the elements of U(p’, ¢). Then there exist elements (ex)r=1,... p'+¢ Such
that (ex, Jeg)k=1,..., p'+¢ 1s an orthonormal basis of R”'¢. Hence we can imbed U( p.q)in
SO(p, q) by

i:U(p,q") = SO(p, q)

. ) an by
A +1iB = ((ar)1<k,i<m + 10k 1<k,1<m) — .
I<k,I<m

—by  au

We consider the homomorphism
a:U(p, q)— SO(p,q) x S! C — (i(C), det(C))
The eigen values of every element C € U(p/, ¢') is in S! and
cos 26 + & sin 260ey - Jer = er(cos Oe + sin OJey)(— cos Oer + sin OJey),

where ¢ = (ex, ex) p,4. Then the following homomorphism is well defined:

m
) 6 7 .
a:UQp,q)— Spin‘(p,q) C— H (cos Ek + & sin Ekek - Jek) K>S

k=1
where €%, k = 1,...,m, are the eigen values of C. And it is easy to verifies that the
following diagram commutes
Spin‘c(p, q)
7 LE
U@p',qd) — SO(p,q) xS (6)

Consequently,

Pspinc(p.q) = Pu(p',q) Xa Spin“(p, @)
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Now, let us denote by S := Pspinc(p.q) X, , Ap.q the spinor bundle associated to the
spin‘-structure Pgpiy(p,q)- The Clifford multiplication given by (3) defines a Clifford mul-
tiplication on S:

T™M®S = (PSpin(p,q) X, R™) ® (PSpin(p,q) X, A;)t,q) - 8
X®y)=1[q.x]® g, v] = [g, xv] =: X - .

The scalar product (-, -) o is Sping(p, g)-invariant. Then if we suppose that (M, g) is a
space- and time-oriented manifold (-, -) o defines a scalar product on S by:

(U ¥1)a =(v,v1)a, for Y =[g,v] and 1 =g, vi] € I'(S).

According to (5), it is then easy to verify that

(X -9, 91)a =D, X - y)a, @)

for X € I'(M) and y, Y1 € I'(S). Now, as in the Riemannian case (see [5]), if (M, g) is
a pseudo- Riemannian spin¢ manifold, every connection form A : TPg1 — iR on the S'-
bundle Pg1 defines (together with the Levi—Civita D of (M, g)) a covariant derivative vA
on the spinor bundle S, called the spinor derivative associated to (M, g, S, Ps1, A).

Henceforth, a pseudo- Riemannian spin® manifold will be a set (M, g, S, Ps1, A), where
(M, g) is an oriented connected pseudo-Riemannian manifold, S is a spin€ structure, Pg
is the S!-principal bundle over M and A is a connection form on Pg1. Using (7) and by the
same proof in the Riemannian case (see [5]), we conclude that

Proposition 1. VX, Y € I'(M) and YV, Y1 € T'(S),

VHX-9) = X -V} + DyX -y ®)
And if we suppose that (M, g) is space- and time-oriented manifold,
X y)a = (Vi ¥i)a + (¥ Vyvi) a. ©)

Let us denoted by F4 := iw the curvature form of A, seen as an imaginary-valued two-form
on M, by R and Ric, respectively, the curvature and the Ricci tensors of (M, g) and by R4
the curvature tensor of V4. Like in the Riemannian case (see [5]), if we put @(X) := X_w
we have

Proposition 2. Forq = (ey, ..., em) alocal section of Pspin(p,q), VX, Y € I'(M) and ¥+ €
(s,

1 1
RYXYY =5 Y esjgRX.Veneper-ej-y+izoX. 1)y, (10)
1<i<j<m
and

> eiei- RAX, ey = —%Ric(X) Y+ i%[o(X) . (11)

1<i<m
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Remark 1. According to Example 1,if (M, g)is spinthenitis spin¢. Moreover, the auxiliary
bundle Pg; is trivial and then there exists a global section o : M — Pgi. We choose the
connection defined by A to be flat, and we denote V4 by V. Conversely, if the auxiliary
bundle Pgi of a spin©-structure is trivial, it is canonically identified with a spin-structure.
Moreover, if the connection A is flat, by this identification, vA corresponds to the covariant
derivative on the spinor bundle.

3. Parallel spinors

3.1. Algebraic characterization

It is well know that there exists a bijection between the space PS of all parallel spinors
on (M, g) and the space

ng{veA,,,q;f{m:v}

of all fixed spinors of A, , with respect to the holonomy group H of the connection vA
[1]. If (M, g) is supposed to be simply connected, then PS is in bijection with:

Vi={ve A, ;H -v=0},

where H is the Lie algebra of H. Moreover, provided with the connection defined by the
Levi—Civita connection D and the connection form A the holonomy group of Pso(p, g)x Pg:
is £(H) C H x Hy, where H is the holonomy group of (M, g) and H, the one of A (see
ChapterII, [14]). Hy = {1}ifAisflatand H4 = S! otherwise. With the notations introduced
in Section 2.1, for (B, i) € &.(H), we have

e 1(B,it) = (A;I(B), ;ir) )
Now if we differentiate the relation (4) at [1,1], we get:
$po(C.iNW) = ity + ¢ o (O)V),
for (C, it) € spin(p,q) and v € A, ,. Then
$p.q &2 (B, iD)V) = Firv + ¢p o0 (B)(v).
We conclude that

Proposition 3. (M, g) admits a non trivial parallel spinor if and only if there exists 0 #
v € Ay 4 such that

B-vi=¢, 0 (B)W) = —itv, V(B,it) € &(F) C H® Ha, (12)
where H, H and H 4 are respectively the Lie algebras of H, H and Hy.
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3.2. Proof of theorem 3

Let (M, g, S, Ps1, A) be a spin€ structure where (M, g) is a connected simply connected
irreducible non-locally symmetric pseudo-Riemannian manifold of dimension n = p + ¢
and signature (p, g), which admits a non trivial parallel spinor {». We consider the two
distributions T and E defined by

Ty :={XeTM; X - =0},

Ei={XeTiM;qY e T.M; X -y =iY - ¢},
for x € M. Since  is parallel, By (8), T and E are parallel. Since 7 is isotropic and the
manifold (M, g) is supposed irreducible, by the holonomy principe, we have

T=0. (13)

Now denote by F the image of the Ricci tensor:
Fy :={Ric(X); X € T,M}.

Since ¥ is parallel, (11) shows that
Ric(X) - ¥ = io(X). (14)

Then F C E. Consequently, from (13), we obtain
Et C Ft ={Y € TM; Ric(Y) =0} = {Y € TM;&(Y) = 0}.

(M, g) is supposed irreducible, by the holonomy principe, E=0or E=TM. If E =0,
then F = 0. This gives Ric = 0 and @ = 0. According to Remark 1, (M, g) is spin and
is a parallel spinor on M. If E = TM, we have a (1,1)-tensor J defined by

X -y =iJ(X)-¢¥, where X e TM. (15)
Lemmal. ForX,Y € TyM,if (X +iY) - =0theng(X,Y) =0and g(X, X) = g(Y, Y).
Proof of Lemma 1. If we denote by g¢ the complex form of g then

X 4+1iY) - (X +1iY) -y = —g“(X +1iY, X +iV)¢

= (—8(X, X) +g(Y, Y) — 2ig(X, )y = 0.
Since 1 is non trivial we obtain the lemma.

Lemma 1 implies that J defines an orthogonal almost complex structure on M. Moreover,
from (8) and (15) we obtain J is parallel, since v is parallel. In consequence, (M, g) is a
Kihler manifold. Now if (M, g) is a Kéhler manifold then there exists a canonical spin¢
structure of (M, g). And from Remark 1 and Theorem 2, the following conditions are
equivalent:
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(a) (M, g) is not spin,

(b) Hy =S,

(c) (M, g) is not Ricci-flat,
(d H=U(p,q).

Then the equivalence between (i) and (ii) of Theorem 3 are proved. And from Theorem
2, we have the equivalence between (ii) and (iii). To finish the proof of Theorem 3, it
remains to show for H = U(p/, ¢) that the dimension of parallel spinors on M is 1. For
this, we remark that if we reduce the principle bundles Pspinc(p,q) and Pso(p,q) X Psi to their
holonomy bundles the diagram (6) becomes

i
VY
Ulp,qd) — aU@.q)), (16)

and the holonomy group of Pso(p’q);(PSI is exactly a(U(p',q")) = £(H). However
Up'.q) = SU(p', q") x Usi, where

A 0 .- 0
0 1 " o .

Uglz ;)»ES s
0 --- 0 1

u(p',q') =su(p, q') ® usi where ugi >~ iR is the Lie algebra of Ug:. If we consider the
imbedding

i:u(p',q) <= so2p',2q")

. . aw by
A +1B = ((ar)1<k,i<n + (b)) 1<k,i<n) —>
I<k,I<n

—bu  au
oy (ug1) is generated by (E12, 1). Then:
E(H) = o, (u(p', q) = au(su(p’, q) ® ailug)) = iGsu(p’, ) ® (E12, DR

From[1],u™ :=u(l,..., 1)andu™ := u(—1, ..., —1) generate the space Vup.q) = v €
Ap.gssu(p’, ¢')v = 0}. Moreover, by (1):

Epp-ut = %el cep-ut = %iu"r and Epp-u” = —%iu‘.
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Then u~ belongs to the space
Vap'.q) = {0 € Apgi B-v+ itv = 0,Y(B, it) € &(FH)},
and it is easy to verify that u™ generates V(s o). This completes the proof of Theorem 3.

Remark 2. By Theorem 3, we deduce the results of Moroianau made in the riemannian
case (see [13]).
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